AOR CODE: AOR04012

Premium

Mastica Chios

Heal and Protect your GI Tract from Ulcers

- A health-promoting gum resin derived from the *Pistacia lentiscus* tree
- Helps heal and soothe peptic and gastric ulcers
- Inhibits *Helicobacter pylori*
- Relieves gastric and intestinal inflammation

Gluten Free Vegan Non-GMO Heartburn

AOR Code Variant
AOR04012 120 VEGI-CAPS

Details
Mastic gum is the gummy resin of the mastic tree – *Pistacia lentiscus*, a relative of the pistachio tree. The mastic tree is found almost exclusively on the Greek island of Chios, the birthplace of Hippocrates, the traditional father of medicine. Mastic gum has historically been used in medicine to fight gastric and intestinal inflammation.

In modern society, mastic gum has proven useful for fighting gastritis and heartburn as well as overall gastric and intestinal inflammation. Studies have found that supplementing with mastic gum not only relieves the symptoms of these painful conditions but can actually help heal the stomach, possibly by killing *H. pylori* bacteria. Mastic gum is an excellent natural alternative for those who have experienced the negative long-term side effects of antacids, proton pump inhibitors, antibiotics and other medications that treat the symptoms of heartburn but not the cause.

Label Info

Discussion
Mastica Chios is mastic gum, the resinous extract of the mastic tree (*Pistacia lentiscus*) grown on the Greek island of Chios. Research shows that it helps alleviate stomach pain and heartburn associated with functional dyspepsia and is traditionally used in Ayurveda for Adhmana (excessive gas formation in the stomach and intestines).
Product Variation
Product Code Size
AOR04012 120 VEGI-CAPS

Supplements Facts
Serving Size: 1 Capsule Amount
Chios mastic gum 400 mg
Non-medical ingredients:
- microcrystalline cellulose, sodium stearyl fumarate. Capsule: hypromellose.

Guarantees
AOR™ guarantees that all ingredients have been declared on the label. Contains no wheat, gluten, corn, nuts, peanuts, sesame seeds, sulphites, mustard, soy, dairy, eggs, fish, shellfish or any animal byproducts.

Adult Dosage
Take 1 capsule three times daily on an empty stomach, or as directed by a qualified health care practitioner.

Cautions
For occasional use only. Consult a health care practitioner for use beyond 2 weeks, if symptoms persist or worsen, if you have diabetes mellitus or Crohn’s disease or are taking hypoglycemic or hypolipidemic agents. Do not use if pregnant or breastfeeding or if you have an allergy to Anacardiaceae family plants (eg. pistachios). Discontinue use if hypersensitivity (eg. allergy) occurs.

Source
Pistacia lentiscus (sap)

Main Application
Ulcers (peptic and gastric)
Heartburn

Disclaimer
The information and product descriptions appearing on this website are for information purposes only, and are not intended to provide or replace medical advice to individuals from a qualified health care professional. Consult with your physician if you have any health concerns, and before initiating any new diet, exercise, supplement, or other lifestyle changes.

Research
Background

The Real Root of Stomach Lining Injury and Heartburn

For decades, it was believed that damage to the stomach lining was caused by having too much acid in the stomach. Spicy foods and stress were targeted as acidic culprits; antacids, or more powerful antisecretory drugs like omeprazole (Losec® or Prilosec®), were prescribed in order to suppress the body’s ability to make the “offending” stomach acid. Well, it’s true that the gnawing, burning pain of a damaged stomach lining flares up when acid burning into the injured stomach wall. But the acid doesn’t cause the damage itself. Instead, recent research has proven that most damage to the stomach lining is caused by germs – by an infection with the bacterium Helicobacter pylori.

Antacids Don’t Work on H. pylori

H. pylori is everywhere: about two thirds of the human family has caught the bug, which hides from the hostile environment of the stomach by bunkering down in folds in the lining of the stomach wall. People infected with H. pylori are somewhere between two and six times more likely to develop stomach cancer or mucosal associated-lymphoid-type (MALT) lymphoma (a kind of cancer of the lymphatic system), and are also more vulnerable to iron-deficiency anemia because of bleeding in the stomach.

This new knowledge has led to a revolution in the treatment of an injured stomach lining, which can now mostly be dealt with by using a cocktail of potent – but side-effect-prone – antibiotics. But centuries before medical science identified the role of H. pylori in causing damage to the stomach lining, and extending through the period in which untold millions wasted their time – and put their long-term health at risk – by using antacids and antisecretories. People in the Mediterranean and Middle Eastern world have been getting relief from their gastric problems using a powerful natural remedy that fights the invisible invader head-on – and wins.

Mastic Gum

Mastic gum is the gummy resin of the mastic tree – Pistacia lentiscus, a relative of the tree that gives us the pistachio. The mastic tree is found almost exclusively on the Greek island of Chios, the birthplace of Hippocrates, the traditional father of medicine. The use of mastic in medicine is attested by the Biblical prophet Jeremiah, and the thirteenth-century Arabic physicians Ibn Al-Jazzar Al-Qayrawani and Ibn Al-Baytar specifically extolled its virtues in fighting gastric and intestinal problems.

Additionally, evidence is mounting that in many cases infection with H. pylori also causes, or aggravates, heartburn (gastroesophageal reflux disease (GERD)). If that proves to be the case, then mastic may yet prove to provide soothing relief – and a real solution – for this miserable condition.

From the caravans of the ancient Near East to you: safe, natural, and real relief from digestive suffering.
Research

No side-effects were noted over the course of the studies using mastic gum for the treatment of digestive disorders involving damage to the stomach lining or gastrointestinal system. Indeed, it’s hard to see how side-effects could happen at these effective doses, since two-gram lumps of mastic are used safely as a breath-freshening chewing gum by people throughout the Mediterranean. Indeed, the UK government gave food producers carte blanche to use mastic in their products a quarter of a century ago.

Does mastic work by wiping out the noxious Helicobacter pylori bacterium? Two groups of scientists have found that mastic gum does indeed kill H. pylori in the test-tube, at concentrations easily attainable through such doses of the botanical. Studies are now being conducted by Dr. John Atherton and colleagues at the University of Nottingham to prove, with certainty, that this is exactly what’s happening in people taking mastic as a supplement. However it works, clinical studies show that the healing of digestive tract damage by mastic is very real.

Market Trends

In the Mediterranean and the Middle East, mastic gum has been used as a chewing gum, to fight bad breath, and in many types of foods. In North America, it is mainly known as a supplement to help reduce H. pylori infections and the damage caused.

AOR Advantage

AOR’s Mastica Chios is derived exclusively from mastic gum from the pistachio trees found on the Greek island of Chios.

References

Abstract

Dabos KJ, Sfika E, Vlatta LJ, Frantzi D, Amygdalos GI, Giannikopoulos G.

BACKGROUND: Herbal remedies are increasingly popular for the treatment of functional dyspepsia. Chios mastic gum is a resinous exudate from the stem of Pistacia lentiscus var. chia. It is a traditional natural remedy used throughout the eastern Mediterranean. The aim of this study was to assess the efficacy of Chios mastic gum in patients with functional dyspepsia.

METHODS: One hundred and forty eight patients fulfilling Rome II criteria for functional dyspepsia were randomly assigned to receive either Chios mastic gum 350 mg three times daily or placebo. After 3 weeks of treatment the change from baseline in the severity of symptoms of functional dyspepsia was assessed using the Hong Kong index of dyspepsia. Patients’ global assessment of efficacy was also evaluated.

RESULTS: The symptom score after treatment was significantly lower in the Chios mastic gum than in the placebo group ((14.78 /-1.78) vs (19.96 /-1.83)) (p<0.05). There was a marked improvement of symptoms in 40% of patients receiving placebo and in 77% of patients receiving Chios mastic gum (p<0.02). Individual symptoms that showed significant improvement with Chios mastic gum were: stomach pain in general, stomach pain when anxious, dull ache in the upper abdomen and heartburn

CONCLUSION: Chios mastic gum significantly improves symptoms in patients with functional dyspepsia compared to placebo.

In vitro and in vivo activities of Chios mastic gum extracts and constituents against Helicobacter pylori.

The extracts and pure major constituents of Chios mastic gum (resin of Pistacia lentiscus var. chia) were tested for their activities against Helicobacter pylori. A total mastic extract without polymer (TMEWP) was prepared after removal of the contained insoluble polymer in order to ameliorate solubility and enhance in vivo activity. Administration of TMEWP to H. pylori SS1-infected mice over the period of 3 months with an average dose of 0.75 mg/day led to an approximately 30-fold reduction in the H. pylori colonization (1.5 log CFU/g of tissue). However, no attenuation in the H. pylori-associated chronic inflammatory infiltration and the activity of chronic gastritis was observed. To further characterize potential active mastic constituents, the TMEWP was separated into an acidic
and a neutral fraction. Both were extensively characterized by nuclear magnetic resonance and mass spectroscopy to elucidate the structure of the components contained within each fraction. After chromatographic separation, the acid fraction gave the major triterpenic acids, while the neutral fraction gave several triterpenic alcohols and aldehydes. Mastic extracts and isolated pure triterpenic acids were tested for in vitro activity against a panel of 11 H. pylori clinical strains. The acid fraction was found to be the most active extract (minimum bactericidal concentration [MBC], 0.139 mg/ml), and the most active pure compound was isomasticadienolic acid (MBC, 0.202 mg/ml [0.443 mM]). Our results show that administration of TMEWP may be effective in reducing H. pylori colonization and that the major triterpenic acids in the acid extract may be responsible for such an activity.

Chios mastic gum modulates serum biochemical parameters in a human population.

Triantafyllou A, Chaviaras N, Sergentanis TN, Protopapa E, Tsaknis J.

INTRODUCTION: Current research suggests that Chios mastic (Pistacia lentiscus var. chia) possesses beneficial (antimicrobial, antioxidant, hepatoprotective) properties. This study aims to assess its effects on cardiologic and hepatic biochemical indices of human subjects.

MATERIALS AND METHODS: Subjects (n=133, aged over 50) were randomly assigned to two groups, the first (high-dose group) ingesting daily 5g of mastic powder and the second receiving daily a Chios mastic solution (low-dose group). Serum biochemical parameters were determined on a monthly basis for an 18-month (high-dose group) and a 12-month (low-dose group) follow-up period. Generalized least squares random-effects linear regression was performed.

RESULTS: The group ingesting Chios mastic powder (high-dose group) exhibited a decrease in serum total cholesterol, LDL, total cholesterol/HDL ratio, lipoprotein (a), apolipoprotein A-1, apolipoprotein B (apoB/apoA-1 ratio did not change), SGOT, SGPT and gamma-GT levels; in the second (low-dose) group, glucose levels decreased in males.

DISCUSSION: Chios mastic powder could have a hepatoprotective cardioprotective role in vivo in humans.

Short-term effect of mastic gum on salivary concentrations of cariogenic bacteria in orthodontic patients.

Aksoy A, Duran N, Toroglu S, Koksal F.
OBJECTIVE: To determine antibacterial activity of chewing mastic gum against the salivary levels of Streptococcus mutans, the total number of viable bacteria, and lactobacilli in patients undergoing therapy with fixed orthodontic appliances.

MATERIALS AND METHODS: In this study, the levels of S mutans, lactobacilli, and total cultivated bacteria were measured before and after chewing mastic gum. The antibacterial effects of chewing mastic gum against these microorganisms in saliva were compared with a placebo gum. The counts for orthodontically treated patients were evaluated before chewing gum; just after chewing gum; and after 45, 75, 105, and 135 minutes. Saliva samples taken from the patients were inoculated onto trypticase-yeast-cystine-bacitracin agar for mutans streptococci and onto Rogosa agar for lactobacilli. The agar plates were incubated for 48 hours anaerobically at 37 degrees C. The total number of viable bacteria was then counted.

RESULTS: Just after chewing the mastic gum for 15 minutes, a significant decrease of total bacteria and S mutans was observed (P < .001). The reduction in lactobacilli was not significant at later first stage (P > .05). However, at the end of 135 minutes, there were significantly fewer S mutans (P < .001), total viable bacteria (P < .001), and lactobacilli (P < .001) in the oral cavity after chewing mastic gum than after chewing paraffin (P < .001). The results show that chewing mastic gum decreased the total viable bacteria, S mutans, and lactobacilli in saliva in orthodontically treated patients with fixed appliances.

CONCLUSION: Chewing mastic gum might be useful in preventing caries lesions.