Advanced Whey Vanilla


Enhanced with lactoferrin

  • 28% more lactoferrin than other whey proteins
  • Naturally balanced amino acid profile
  • Available in two delicious flavours
  • No added sweeteners
Gluten Free

$84.94 or subscribe and save 20%

In stock

Choose a purchase plan:

Advanced Whey isn’t your average protein powder. It is a high-quality whey protein designed to capitalize on the benefits of immune-supporting nutrients naturally found in whey. The combination of whey protein concentrate rich in alpha-lactalbumin, whey protein isolate and lactoferrin isolate results in a protein that is 20% alpha-lactalbumin and contains up to 28% more lactoferrin than other high-end whey protein powders currently available. Advanced Whey is now made without the use of soy-based ingredients. It is good for those who want to boost their immunity, build muscle or lose weight, and is a good source of nutrition for those who may not consume enough protein in their diet.

AOR Advantage

AOR’s Advanced Whey is designed to be as natural and healthy as possible. Advanced Whey uses cross-flow microfiltration to minimize protein denaturation, contains no sweeteners, and includes minimal added flow agents. AOR’s whey uses both whey protein isolate and a high-protein (75%) concentrate. Both yield a high percentage of protein while the concentrate contains healthy immune-enhancing factors not found in isolate.




Combines whey protein isolate plus a high-protein concentrate (80% protein), yielding a 20% alpha-lactalbumin and enriched with up to 28% more lactoferrin than other high-end whey proteins currently available. Lactoferrin levels increase naturally after intense bouts of physical activity in order to support the immune system which can be weakened by rigorous exercise. Advanced Whey uses a low-temperature cross-flow microfiltration (not ion-exchange) to maximize protein content and minimize protein denaturation. Advanced Whey Protein has been tested free of pesticides, antibiotics, heavy metals and melamine.


AOR™ guarantees that all ingredients have been declared on the label. Contains no wheat, gluten, sulphites, soy or eggs.

Adult Dosage

Mix one scoop with your favourite beverage. Stir with a spoon for 30 seconds. No blender required. Sweeten to taste. Take a few hours before or after taking other medications, or as directed by a qualified health care practitioner.


Consult a health care practitioner prior to use if you have been instructed to follow a low protein diet. This product contains milk products. Do not use if you have a milk allergy.

Main Application
  • Immune function
  • Nutritional support
  • Normal cell growth
  • Anti-inflammatory
  • Antioxidant

The information and product descriptions appearing on this website are for information purposes only, and are not intended to provide or replace medical advice to individuals from a qualified health care professional. Consult with your physician if you have any health concerns, and before initiating any new diet, exercise, supplement, or other lifestyle changes.

Serving Size: One Rounded Scoop (~28.6 g)
100 Calories/419 kJ
Calories from Fat
5.2 Calories/21.8 kJ
22 g
4.3 g
310 mg
3.3 g
2.5 g
0.7 g
0.0 g
0.6 g
Saturated Fat
0.3 g
146 mg
29 mg

Non-medicinal Ingredients: Cross-flow microfiltered whey protein isolate, whey protein concentrate, lactoferrin isolate, natural vanilla flavour, vanillin, sunflower lecithin, xanthan gum, fructose, silicon dioxide, tricalcium phosphate.


The use and popularity of whey protein has grown to such an extent since the mid-1990′s that it is now found in everything from general meal-replacements to infant formulas for newborns. No longer relegated to the exclusive domain of the blender, whey protein is now almost effortlessly added to cereals, yogurts, and even breads and pastries. Such widespread applications speak volumes about the unlocked potential of whey protein. Scientists speculated – correctly as it turned out – that any macronutrient that has earned such widespread acceptance has more secrets to yield. Companies such as AORTM have taken the initiative to unlock these secrets, and Advanced WheyTM represents the fruition of those efforts.

A long way from curds and whey…

The origin of whey protein is found in the first phase of the manufacturing process of cottage cheese, namely the ‘curdling phase’. This is when bovine milk is separated into curd and whey, (the solid part and the liquid part respectively). The liquid part, namely the whey, is then dried and powdered. More scrupulous manufacturers are certain to use freeze-drying and ion-exchange cross-filtering in the drying and powdering process to ensure the survival of the maximum number of micronutrients – as opposed to the macronutrients, namely protein, carbohydrates and fat, with protein constituting approximately 90% of whey. It is within this predominant macronutrient fraction that most of whey’s micronutrient fractions are to be found. The three fractions with the most important health benefits are lactoferrin, alpha-lactalbumin and glycomacropeptides.

Lactoferrin: Lactoferrin forms a much smaller percentage of whey protein than does alpha-lactalbumin. However, its prominence in whey protein far exceeds its relatively minute size. In spite of its weight of only 80 kilodaltons at its most elemental level, Lactoferrin contains 703 different amino acids. Lactoferrin is an iron-binding whey fraction that has been known to demonstrate an impressive anti-microbial capability comparable to that of alpha-lactalbumin in addition to being able to control inflammation and cholesterol.

Alpha-lactalbumin: Alpha-lactalbumin has been associated with anti-carcinogenic and anti-microbial activity.

Sialic acid: There is a particularly innovative whey protein fraction called N-acetylneuraminic acid – commonly known as sialic acid – that has been garnering attention lately. Definitively speaking, sialic acids are sugar molecules that are part of the glycomacropeptide content of whey protein. They are especially present in the content of human mucus and saliva and their biological role is to bind to invading pathogens for their subsequent excretion via the mucus membranes.

Please select a start rating
{{ | date:'medium'}}
Comment pending for approval
{{ | date:'medium'}}
Comment pending for approval
{{ | date:'medium'}}
Comment pending for approval